针对视频场景动态多变导致模型精度降低、复杂环境下模型收敛困难的问题,提出场景自适应的在线多视图融合视频摘要算法,利用语义、图像熵、视觉信息等融合的域无关特征对模型奖励进行奖励设计,同时降低特征空间以加速模型微调的收敛速度。
针对边端情境复杂多样,潜藏情境难挖掘的问题,拟提出人机共融和数据潜藏情境挖掘技术
针对物联终端协同问题提出一种聚合多个物联网设备的计算能力以完成单个设备无法执行任务的深度神经网络划分方法。通过将深度模型以层为粒度进行划分,选择有效的模型分割点,将复杂的深度模型部署到分布式协同环境,综合多个异构设备算力解决高消耗模型的部署问题
在深度模型分割相关研究中,时延预测直接决定了搜索到的模型分割方案的效果。然而,现有深度模型分割研究中多以实际测量的方式来获取,普适性较低且耗时耗力、实用性不强。
为保证深度学习模型的预测精度,通常不能对其进行十分彻底的压缩,这导致压缩后的模型可能仍然不能顺利部署在嵌入式设备上。X-ADMM方法融合了模型剪枝和分割的优势,首先采用结构剪枝的方式并基...
平台相关的资源预测对边端协同深度计算中的模分区与资源分配十分重要,而实际测量将耗能耗时,不利于高效、快速的边端协同计算过程。
基于图的深度模型自适应手术刀算法