暂无介绍
“在线域自适应”与传统域自适应和域泛化方法不同,该类方法应对的是训练阶段无法预估测试阶段数据分布的场景(这一点和域泛化方法相同),其侧重于在测试阶段利用当前的推理数据通过“边推理边训练”的模式,实现模型对未知测试数据的更新适应,从而达到精度提升的效果。
“域泛化”旨于应对如下问题:相比于域自适应,域泛化注重于在训练阶段,目标域数据完全不可获取的情况下,如何使得模型仅依靠源域数据获得强大的鲁棒表征能力,在无法提前观测的部署环境下保持较高的模型性能。
自深度学习发展以来,域自适应(Domain Adaptation)对上述所描述的域偏移问题进行了大量的解决方案探索。早期的域自适应方法主要集中于Unsupervised Domain Adaptation (UDA)的设置,它们旨于利用源域的标记数据去提升来自目标域的无标记数据的测试性能。近年来,越来越多的基于UDA的变体被提出,它们注重于更加苛刻和贴合现实应用的场景和问题设置,并实施更加“精妙”的解决方案来应对。
边端部署环境下的分布偏移(潜藏情境)分类理论