暂无介绍
自深度学习发展以来,域自适应(Domain Adaptation)对上述所描述的域偏移问题进行了大量的解决方案探索。早期的域自适应方法主要集中于Unsupervised Domain Adaptation (UDA)的设置,它们旨于利用源域的标记数据去提升来自目标域的无标记数据的测试性能。近年来,越来越多的基于UDA的变体被提出,它们注重于更加苛刻和贴合现实应用的场景和问题设置,并实施更加“精妙”的解决方案来应对。