大多数开放域对话模型在长期人机对话的环境中往往表现不佳。可能的原因是他们缺乏理解和记忆长期对话历史信息的能力。论文提出了一个新的长时记忆对话任务(LeMon),构建了一个新的对话数据集DuLeMon和一个具有长时记忆机制的对话生成框架PLATO-LTM。这种LTM机制使对话系统能够准确地提取和持续更新长期角色记忆,而不需要多会话对话数据集进行模型训练,从而提高对话的一致性和吸引力。论文的工作是第一次尝试对双方的角色信息进行实时动态管理,包括用户和聊天机器人。
-
0
-
张钦尧
发布于 2024-03-31 21:57