介绍了氢赋能零碳智慧能源系统,讨论了未来通信网和算力网能源需求的挑战,提出通信-算力-能源“三网合一”的框架,分析了建设氢赋能零碳算力数据中心的可行性和经济性。介绍了基于智能电网的楼宇多能源系统节能优化。
在资源有限的环境中部署深度神经网络(DNN)并获得令人满意的性能是一项挑战。尤其是在微控制器上,因为其空间和计算能力非常有限。TREC 是最近为在 DNN 中实现计算重用而提出的一种优化方法,本文的重点是如何在微控制器上实现空间和时间的节约。该解决方案在保持 DNN 精度稳定的同时,最大限度地提高了性能。实验表明,该解决方案消除了 DNN 中 96% 以上的计算,使其能够很好地融入微控制器,在仅有微小精度损失的情况下提高了 3.4-5x速度。
DeepSwarm——一种新型边缘群体智能感知-计算耦合框架(通过数据采集和计算的双向优化实现群体深度学习) Organization:Northwestern Polytechnical University Author:Sicong Liu, Bin Guo, Zi...
# EchoPFL: Asynchronous Personalized Federated Learning on Mobile Devices with On-Demand Staleness Control# 文章引用Li X, Liu S, Zhou Z, et al. EchoPFL: Asynchronous Personalized F...
随着深度学习在物联网智能基础设施中的广泛应用,各种AIoT(人工智能物联网)应用成为可能。然而,基础设备有限的资源限制了深度计算任务的执行效率。如何提高这些任务的部署效率,成为一个涉及多层优化的问题,包括上层模型结构、底层系统调度,以及它们之间的相互影响。为扩展物联网中深度学习部署和优化的研究范围,我们深入调研了现有的优化技术,涵盖了本地和分布式计算中的深度学习模型、计算图、运算符、内存调度和硬件指令。
研究动机 自从大语言模型问世以来,就表现出非凡的能力,我们的科研和工作都离不开大语言模型的帮助。大语言模型的强大功能可以为我们提供以下几种服务:文本生成、摘要总结、关键信息提取、文...
Deep Learning Inference on Heterogeneous Mobile Processors: Potentials and Pitfalls - 论文分享
# 文章引用Liu S, Li X, Zhou Z, et al. AdaEnlight: Energy-aware low-light video stream enhancement on mobile devices[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and...
TinyAgent: Function Calling at the Edge 摘要: 近期的大语言模型(LLMs)使得可以开发出能够通过调用功能来整合各种工具和API,以完成用户查询的高级智能体系统。然而,这些LLMs在边缘的...